4.6 Article

On the nature of OH-stretching vibrations in hydrogen-bonded chains: Pump frequency dependent vibrational lifetime

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 13, Issue 10, Pages 4641-4650

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp02143a

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft through Collaborative Research Centers [SFB 624, SFB 813]

Ask authors/readers for more resources

Two-dimensional infrared spectroscopy was carried out on stereoselectively synthesized polyalcohols. Depending upon the stereochemical orientation of their hydroxyl groups, the polyols can either feature linear chains of hydrogen bonds that are stable for extended periods of time or they can display ultrafast dynamics of hydrogen-bond breakage and formation. In the former case, the OH-stretching vibrations and their transition dipoles are substantially coupled, hence prior to vibrational relaxation, the initial OH-stretching excitation is rapidly redistributed among the set of hydroxyl-groups constituting the hydrogen-bonded chain. This redistribution is responsible for an ultrafast loss of memory regarding the frequency of initial excitation and as a result, a pump-frequency independent vibrational lifetime is observed. In contrast, in the latter case, the coupling of the OH-groups and their transition dipoles is much weaker. Therefore, the OH-stretching excitation remains localized on the initially excited oscillator for the time scale of vibrational energy relaxation. As a result inhomogeneous relaxation dynamics with a pump-frequency-dependent lifetime are observed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available