4.6 Article

Toluene and benzyl decomposition mechanisms: elementary reactions and kinetic simulations

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 13, Issue 48, Pages 21308-21318

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cp22601k

Keywords

-

Ask authors/readers for more resources

The high temperature decomposition kinetics of toluene and benzyl were investigated by combining a kinetic analysis with the ab initio/master equation study of new reaction channels. It was found that similarly to toluene, which decomposes to benzyl and phenyl losing atomic hydrogen and methyl, also benzyl decomposition proceeds through two channels with similar products. The first leads to the formation of fulvenallene and hydrogen and has already been investigated in detail in recent publications. In this work it is proposed that benzyl can decompose also through a second decomposition channel to form benzyne and methyl. The channel specific kinetic constants of benzyl decomposition were determined by integrating the RRKM/master equation over the C7H7 potential energy surface. The energies of wells and saddle points were determined at the CCSD(T) level on B3LYP/6-31+G(d,p) structures. A kinetic mechanism was then formulated, which comprises the benzyl and toluene decomposition reactions together with a recently proposed fulvenallene decomposition mechanism, the decomposition kinetics of the fulvenallenyl radical, and some reactions describing the secondary chemistry originated by the decomposition products. The kinetic mechanism so obtained was used to simulate the production of H atoms measured in a wide pressure and temperature range using different experimental setups. The calculated and experimental data are in good agreement. Kinetic constants of the new reaction channels here examined are reported as a function of temperature at different pressures. The mechanism here proposed is not compatible with the assumption often used in literature kinetic mechanisms that benzyl decomposition can be effectively described through a lumped reaction whose products are the cyclopentadienyl radical and acetylene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available