4.6 Article

Encapsulation of chiral Fe(salan) in nanocages with different microenvironments for asymmetric sulfide oxidation

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 13, Issue 7, Pages 2504-2511

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp01828g

Keywords

-

Funding

  1. National Basic Research Program of China [2009CB623503, 2010CB833300, 2008DFB50130]
  2. National Natural Science Foundation of China [20921092]

Ask authors/readers for more resources

The solid catalysts for asymmetric oxidation of sulfides were prepared by encapsulating a chiral iron salan complex [Fe(salan)] in the nanocages of mesoporous silicas. The microenvironment of nanocages was finely tuned using silylation reagents with different kinds of organic groups, such as propyl (C3), 1-butyl-3-propyl-4,5-dihydroimidazolium bromide (ILBr), N-propyl-N,N,N-tri-n-butylammonium chloride (TBNCl) and N-propyl-N, N, N-tri-n-butylammonium bromide (TBNBr), and investigated by water and benzene adsorption. Fe(salan) encapsulated in the amphiphilic nanocage shows much higher enantioselectivity and activity than that in hydrophobic or hydrophilic nanocage for the asymmetric oxidation of thioanisole using H2O2 as oxidant. The TOF of Fe(salan) encapsulated in the nanocage modified with TBNBr can reach as high as 220 h(-1), even higher than homogeneous Fe(salan) with a TOF of 112 h(-1). The enhanced catalytic activity is mainly due to the fast diffusion of H2O2 and sulfide in the amphiphilic nanocage. The above results suggest that the microenvironment modification of the nanocage is an efficient method to synthesize highly efficient solid catalysts for asymmetric catalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available