4.6 Article

Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 12, Issue 46, Pages 15251-15258

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp00609b

Keywords

-

Ask authors/readers for more resources

Understanding and improving durability of fuel cell catalysts are currently one of the major goals in fuel cell research. Here, we present a comparative stability study of multi walled carbon nanotube (MWCNT) and conventional carbon supported platinum nanoparticle electrocatalysts for the oxygen reduction reaction (ORR). The aim of this study was to obtain insight into the mechanisms controlling degradation, in particular the role of nanoparticle coarsening and support corrosion effects. A MWCNT-supported 20 wt.% Pt catalyst and a Vulcan XC 72R-supported 20 wt.% Pt catalyst with a BET surface area of around 150 m(2) g(-1) and with a comparable Pt mean particle size were subjected to electrode potential cycling in a lifetime stability regime (voltage cycles between 0.5 to 1.0 V vs. RHE) and a start-up stability regime (cycles between 0.5 to 1.5 V vs. RHE). Before, during and after potential cycling, the ORR activity and structural/morphological (XRD, TEM) characteristics were recorded and analyzed. Our results did not indicate any activity benefit of MWCNT support for the kinetic rate of ORR. In the lifetime regime, the MWCNT supported Pt catalyst showed clearly smaller electrochemically active surface area (ECSA) and mass activity losses compared to the Vulcan XC 72R supported Pt catalyst. In the start-up regime, Pt on MWCNT exhibited a reduced relative ECSA loss compared to Pt on Vulcan XC 72R. We directly imaged the trace of a migrating platinum particle inside a MWCNT suggesting enhanced adhesion between Pt atoms and the graphene tube walls. Our data suggests that the ECSA loss differences between the two catalysts are not controlled by particle growth. We rather conclude that over the time scale of our stability tests (10 000 potential cycles and beyond), the macroscopic ECSA loss is primarily controlled by carbon corrosion associated with Pt particle detachment and loss of electrical contact.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available