4.6 Article

Influence of temperature on the structure and dynamics of the [BMIM][PF6] ionic liquid/graphite interface

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 12, Issue 37, Pages 11245-11250

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp00220h

Keywords

-

Ask authors/readers for more resources

The influence of temperature on the structure and dynamics of the [BMIM][PF6] ionic liquid/graphite interface has been investigated by molecular dynamics simulations. The performed simulations cover a 100 K wide temperature interval, ranging from 300 K to 400 K. It was shown that the magnitudes of density peaks of anions in the vicinity of the surface decrease with increasing temperature while in the case of cations anomalous temperature behaviour of the density profile is observed: the magnitude of the second peak of cations increases with the increase of temperature. To characterize interface dynamics the local self-diffusion coefficients D-x of ions in the normal direction to the surface and the residence time of ions in the first and second interfacial layer have been estimated. It was shown that the local self-diffusion coefficients in the vicinity of the surface correlate with the local ion density; the maxima of the function D-x(x) for the cations (anions) coincide with the regions of reduced cation (anion) density and vice versa. Finally, the influence of temperature on the screening potential in the vicinity of a charged graphite surface has been studied. It was shown that the increase of temperature from 300 K to 400 K induces the decrease of the potential drop across the interface that implies the increase of the capacitance of the electrical double layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available