4.6 Article

Size control and immobilization of gold nanoparticles stabilized in an ionic liquid on glass substrates for plasmonic applications

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 12, Issue 8, Pages 1804-1811

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b914230d

Keywords

-

Funding

  1. Japan Society for the Promotion of Science [20245031]
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan [470, 19049009, 452, 20031012]
  3. Nagoya University

Ask authors/readers for more resources

Gold (Au) nanoparticles were prepared by sputter deposition of Au metal in an ionic liquid (IL) of 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6). The size of Au nanoparticles was increased from 2.6 to 4.8 nm by heat treatment at 373 K. The nanoparticles uniformly dispersed in the IL were densely immobilized on a glass substrate surface modified with a silane coupling agent having an imidazole functional group by spreading the Au particle IL solution on the substrates, followed by heat treatment at 373 K. The optical property of the thus-obtained films was tunable by controlling the size of Au nanoparticles in the IL and the degree of immobilization. An intense localized surface plasmon resonance (LSPR) peak was observed in each Au particle film, and the wavelength of the LSPR peak could be controlled by changing the size of nanoparticles in the IL solution before immobilization. Photoexcitation of the LSPR peak caused enhancement of the photoluminescence of CdTe nanoparticles immobilized on Au nanoparticle films, probably due to the locally enhanced electric field formed around Au nanoparticles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available