4.6 Article

The physical chemistry of coordinated aqua-, ammine-, and mixed-ligand Co2+ complexes: DFT studies on the structure, energetics, and topological properties of the electron density

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 12, Issue 9, Pages 2126-2138

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b919953e

Keywords

-

Funding

  1. Japan Society for the Promotion of Science (JSPS) [P 08349]
  2. Department of Science and Technology
  3. National Research Foundation, Pretoria

Ask authors/readers for more resources

Spin-unrestricted DFT-X3LYP/6-311++ G(d, p) calculations have been performed on a series of complexes of the form [Co(H2O)(6-n)(NH3)(n)](2+) (n = 0-6) to examine their equilibrium gas-phase structures, energetics, and electronic properties in their quartet electronic ground states. In all cases Co2+ in the energy-minimised structures is in a pseudo-octahedral environment. The calculations overestimate the Co-O and Co-N bond lengths by 0.04 and 0.08 angstrom, respectively, compared to the crystallographically observed mean values. There is a very small Jahn-Teller distortion in the structure of [Co(H2O)(6)](2+) which is in contrast to the very marked distortions observed in most (but not all) structures of this cation that have been observed experimentally. The successive replacement of ligated H2O by NH3 leads to an increase in complex stability by 6 +/- 1 kcal mol(-1) per additional NH3 ligand. Calculations using UB3LYP give stabilisation energies of the complexes about 5 kcal mol(-1) smaller and metal-ligand bond lengths about 0.005 angstrom longer than the X3LYP values since the X3LYP level accounts for the London dispersion energy contribution to the overall stabilisation energy whilst it is largely missing at the B3LYP level. From a natural population analysis (NPA) it is shown that the formation of these complexes is accompanied by ligand-to-metal charge transfer the extent of which increases with the number of NH3 ligands in the coordination sphere of Co2+. From an examination of the topological properties of the electron charge density using Bader's quantum theory of atoms in molecules it is shown that the electron density rho(c) at the Co-O bond critical points is generally smaller than that at the Co-N bond critical points. Hence Co-O bonds are weaker than Co-N bonds in these complexes and the stability increases as NH3 replaces H2O in the metal's coordination sphere. Several indicators, including the sign and magnitude of the Laplacian of the charge density del(2)rho(c), the ratio of the local potential and kinetic energy densities, vertical bar V-c vertical bar/G(c), the sign of the total energy density H-c, and the delocalisation index delta(Co, X), X = O, N, are used to show that whilst the metal-ligand bonds are predominantly ionic in nature, they gain covalent character as NH3 replaces H2O, and the Co-N bond is significantly more covalent than the Co-O bond. We have shown that the delocalisation index delta(Co, X), X = O, N, is strongly correlated with the zero-point corrected stabilisation energy E-d(c) demonstrating that delta can be used as a measure of the bond stability in these complexes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available