4.6 Article

Decomposition of substituted alkoxy radicals-part I: a generalized structure-activity relationship for reaction barrier heights

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 11, Issue 40, Pages 9062-9074

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b909712k

Keywords

-

Funding

  1. FWO-Flanders
  2. KULeuven Research Council

Ask authors/readers for more resources

An update and expansion of our readily applicable structure-activity relationship (SAR) for predicting the barrier height E(b) to decomposition by beta C-C scission of (substituted) alkoxy radicals is presented. Such alkoxy radicals are key intermediates in the atmospheric oxidation of volatile organic compounds, and a correct description of their chemistry is vital to the understanding of atmospheric chemistry; nevertheless, experimental data on these reactions remain scarce. The SAR is based on quantum chemical characterizations of a large set of alkoxy radicals, and accommodates alkoxy radicals with alkyl- (-R), oxo-(=O), hydroxy- (-OH), hydroperoxy (-OOH), alkoxy (-OR), alkylperoxy- (-OOR), nitroso- (-NO), nitro- (-NO(2)), nitrosooxy- (-ONO), and nitroxy- (-ONO(2)) functionalities, as well as 3- to 6-membered rings and some unsaturated side chains. The SAR expresses the barrier height to decomposition, E(b) = 17.9 kcal mol(-1) + Sigma N(s) x F(s), as a linear function of the number N(s) of these substituents on the relevant carbons, and the substituent-specific activities F(s) derived from the quantum chemical calculations, allowing facile predictions based solely on the molecular structure. For low barriers, <= 7 kcal mol(-1), a simple curvature correction is required. The SAR-predicted barrier height E(b) can be used to predict the high-pressure rate coefficient for alkoxy decomposition k(diss) at or around 298 K.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available