4.6 Article

Fluid dynamics of evolving foams

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 11, Issue 46, Pages 10860-10866

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b913262g

Keywords

-

Funding

  1. European Synchrotron Radiation Facility (ESRF [MA641]
  2. CSIC
  3. Spanish Ministry of Science and Innovation [MAT 2007-61116]
  4. UCLM [PAI06-0102-7466]
  5. MiCInn [CGL2006-03611]
  6. Ramon y Cajal

Ask authors/readers for more resources

The physical properties of many multiphase systems are determined by coarsening phenomena. From raindrops to polycrystal grains and foams, the formation and stability of these systems continuously evolve towards lower-energy configurations through events such as coalescence, Ostwald ripening and drainage. Here we propose a procedure to identify and characterise key topological transformations of coarsening phenomena using a physically-based fluid dynamic framework. In situ, real-time foaming processes of a polymeric matrix reinforced with two morphologically different nanofillers, carbon nanotubes and graphene sheets were observed by synchrotron X-ray radioscopy. We obtained detailed information on the evolution of the growth patterns and coarsening events. Filled samples showed differences in both trend and speed compared with the unfilled sample. Furthermore, we found different dominating coarsening phenomena due to the wetting nature of carbon nanoparticles. Our procedure can be extended to sequences of any type of 2D projection or 3D images and to other multiphase systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available