4.6 Article

Preparation and characterization TiOx-Pt/C catalyst for hydrogen oxidation reaction

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 11, Issue 25, Pages 5192-5197

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b822249e

Keywords

-

Funding

  1. Ministry of Science and Technological Development, Republic of Serbia [142038]

Ask authors/readers for more resources

The hydrogen oxidation reaction (HOR) was studied at the home made TiOx-Pt/C nanocatalysts in 0.5 mol dm(-3) HClO4 at 25 degrees C. Pt/C catalyst was first synthesized by modified ethylene glycol method (EG) on commercially used carbon support (Vulcan XC-72). Then TiOx-Pt/C catalyst was prepared by the polyole method followed by TiOx post-deposition. The synthesized catalyst was characterized by XRD, TEM and EDX techniques. It was found that Pt/C catalyst nanoparticles were homogenously distributed over carbon support with the mean particle size of about 2.4 nm. The quite similar, homogenous distribution and particle size were obtained for Pt/C doped by TiOx catalyst which was the confirmation that TiOx post-deposition did not lead to significant growth of the Pt nanoparticles. The electrochemically active surface area of the catalyst was determined by using the cyclic voltammetry technique. The kinetics of hydrogen oxidation was investigated by the linear sweep voltammetry technique at the rotating disc electrode (RDE). The kinetic equations used for the analysis were derived considering the reversible or irreversible nature of the kinetics of the HOR. It was found that the hydrogen oxidation reaction for an investigated catalyst proceeded as an electrochemically reversible reaction. The values determined for the kinetic parameters-Tafel slope of 28 mV dec(-1) and exchange current density about 0.4 mA cm(Pt)(-2) are in good agreement with usually reported values for a hydrogen oxidation reaction with platinum catalysts in acid solutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available