4.6 Article

Stacked-structure-dependent photoelectrochemical properties of CdS nanoparticle/layered double hydroxide (LDH) nanosheet multilayer films prepared by layer-by-layer accumulation

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 11, Issue 26, Pages 5369-5376

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b902023c

Keywords

-

Funding

  1. Japan Society for the Promotion of Science [20245031]
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan [19049009]
  3. Research Foundation for Materials Science

Ask authors/readers for more resources

Inorganic multilayer films were prepared by layer-by-layer accumulation of positively charged layered double hydroxide (LDH) nanosheets and negatively charged CdS nanoparticles of different sizes. Nanoparticles were densely immobilized on LDH sheets to form a monolayer without coalescence into larger particles. The absorbance and photoluminescence intensity of immobilized CdS particles were enlarged with an increase in the accumulation number of the film. Hybrid films produced by accumulation of both monolayers of CdS particles (diameter: 5 nm) and those of smaller CdS particles (2.1 nm) exhibited characteristic photoluminescence spectra indicating the efficient energy transfer of photogenerated excitons from nanoparticle layers of smaller CdS particles to those of larger ones. LDH/CdS multilayers deposited on an F-doped SnO2 (FTO) electrode behaved as an n-type semiconductor photoelectrode in an acetonitrile solution regardless of the size of the CdS particles immobilized, but their efficiency for photocurrent generation was greatly dependent on the stacked structure of the films. Accumulation of CdS particles of 2.1 nm in diameter on pre-coated LDH/CdS layers of 5 nm-sized CdS particles on FTO remarkably enhanced the photocurrent intensity in comparison to that in the case of accumulation of these two kinds of CdS particles in the opposite sequence. These observations can be explained by photoinduced electron transfer and energy transfer along with the band gap gradient in the films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available