4.6 Article

Self-assembling dipeptides: including solvent degrees of freedom in a coarse-grained model

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 11, Issue 12, Pages 2068-2076

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b818146m

Keywords

-

Funding

  1. German Science Foundation within the Emmy Noether Programme [PE 1625/1-1]

Ask authors/readers for more resources

In the previous paper [A. Villa, C. Peter, N. F. A. van der Vegt, Phys. Chem. Chem. Phys., 2009, DOI: 10.1039/b818144f], a strategy to develop a solvent-free coarse-grained model for peptides is outlined which is based on an atomistic (force field) description. The coarse-grained model is designed such that it correctly captures the conformational. exibility of the molecules and reproduces the interaction between peptides in aqueous solution. In the present paper, we revisit this model and present a method to devise nonbonded interactions such that also the coarse-grained level maintains explicit solvent degrees of freedom. In this new approach we rely on a structure-based coarse graining methodology which preserves the solvation structure around the peptides in combination with a method to devise nonbonded potentials between peptide beads in a way that the peptide-peptide interaction in water is represented correctly and that results in the correct thermodynamic association behavior. The outlined coarse graining strategy provides us with two (one implicit-and one explicit-solvent) models that are well suited for multiscale-simulation and scale-bridging purposes. We show that this is a powerful tool to efficiently simulate long time-scale and large length-scale biomolecular processes such as peptide self-assembly. In combination with an efficient backmapping methodology we can obtain well-equilibrated atomistic structures of the resulting aggregates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available