4.6 Review

What can be learned from single molecule spectroscopy? Applications to sol-gel-derived silica materials

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 11, Issue 1, Pages 66-82

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b812924j

Keywords

-

Funding

  1. National Science Foundation [CHE-0316466, CHE-0647849, CHE-0648716]

Ask authors/readers for more resources

Single molecule spectroscopic methods are now being widely employed to probe the nanometer scale properties of sol-gel-derived silica materials. This article reviews a subset of the recent literature in this area and provides salient examples of the new information that can be obtained. The materials covered include inorganic and organically-modified silica, along with surfactant-templated mesoporous materials. Studies of molecule-matrix interactions based on ionic, hydrogen bonding and hydrophobic interactions are reviewed, highlighting the impacts of these interactions on mass transport phenomena. Quantitative investigations of molecular diffusion by single molecule tracking and fluorescence correlation spectroscopy are also covered, focusing on the characterization of anisotropic and hindered diffusion in mesoporous systems. Single molecule polarity studies are described and the new information that can be obtained from the resulting inhomogeneous distributions is discussed. Likewise, single molecule studies of silica acidity properties are reviewed, including observation of nanoscale buffering phenomena due to the chemistry of surface silanols. Finally, related single nanoparticle studies of macroporous silicas are also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available