4.6 Article

Ultrafast internal conversion pathway and mechanism in 2-(2′-hydroxyphenyl) benzothiazole: a case study for excited-state intramolecular proton transfer systems

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 11, Issue 9, Pages 1406-1415

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b814255f

Keywords

-

Ask authors/readers for more resources

We study the ultrafast electronic relaxation of the proton transfer compound 2-(2'-hydroxyphenyl)benzothiazole (HBT) in a joint approach of femtosecond pump-probe experiments and dynamics simulations. The measurements show a lifetime of 2.6 ps for the isolated molecule in the gas phase in contrast to similar to 100 ps for cyclohexane solution. This unexpected decrease by a factor of 40 for the gas phase is explained by ultrafast internal conversion to the ground state promoted by an inter-ring torsional mode. The quantum chemical calculations based on multireference configuration interaction clearly demonstrate that a S-0/S-1 conical intersection at a 90 degrees twisted structure exists and is responsible for the ultrafast decay. The reaction path leading from the keto form of HBT to this intersection is practically barrierless on the S-1 surface. The on-the-fly dynamics simulations using time-dependent density functional theory show that after electronic excitation to the S-1 state and after fast excited-state proton transfer (30-50 fs), HBT reaches the region of the S-1/S-0 crossing within about 500 fs, which will lead to the observed 2.6 ps deactivation to the ground state. After the internal conversion, HBT branches in two populations, one that rapidly closes the proton transfer cycle and another (trans-keto) that takes similar to 100 ps for that step.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available