4.6 Article

Aqueous peptides as experimental models for hydration water dynamics near protein surfaces

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 10, Issue 32, Pages 4903-4908

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b806995f

Keywords

-

Ask authors/readers for more resources

We report quasi-elastic neutron scattering experiments to contrast the water dynamics as a function of temperature for hydrophilic and amphiphilic peptides under the same level of confinement, as models for understanding hydration dynamics near chemically heterogeneous protein surfaces. We find that the hydrophilic peptide shows only a single non-Arrhenius translational process with no evidence of spatial heterogeneity unlike the amphiphilic peptide solution that exhibits two translational relaxations with an Arrhenius and non-Arrhenius dependence on temperature. Together these results provide experimental proof that heterogeneous dynamical signatures near protein surfaces arise in part from chemical heterogeneity (energy disorder) as opposed to mere topological roughness of the protein surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available