4.6 Article

The shape of the potential energy curves for NHN(+) hydrogen bonds and the influence of non-linearity

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 10, Issue 21, Pages 3043-3051

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b717815h

Keywords

-

Ask authors/readers for more resources

The potential energy curves for proton motion in NHN(+) hydrogen bonds have been calculated to investigate whether different methods of evaluation give different results: for linear H bonds most curves calculated along the NH direction are, as expected, identical with those along N center dot center dot center dot N; for intramolecular H bonds it is very important to take into account the non-linearity and the potential energy curve calculated along the NH direction can be very far from the curve correctly describing the proton transfer. Other factors which influence the proton-transfer process are steric hindrance and presence of anions which modify the proton motion. In the analysis of the proton transfer process it is very important to take changes in the structure of the rest of the molecule into account, which is connected with exchange of energy with the surroundings. Comparison of adiabatic and non-adiabatic curves shows that they are significantly different for very bent hydrogen bonds and for hydrogen bonds with steric constraints for which the proton transfer process must be accompanied with relaxation of the whole molecule. Comparison of the potential-energy curves for compounds with very short H bonds emphasizes that the term 'strong H bond' needs to be qualified. For intermolecular H bonds shortening of the bond is connected with linearization. But for intramolecular H bonds the N center dot center dot center dot N distance cannot be used as the only measure of H bond strength.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available