4.6 Article

Implementation of an iterative algorithm for optimal control of molecular dynamics into MCTDH

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 10, Issue 6, Pages 850-856

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b714821f

Keywords

-

Ask authors/readers for more resources

We have extended a previously implemented algorithm for using optimal control theory within the multi-configurational time-dependent Hartree (MCTDH) software. The new implementation allows the use of arbitrary dipole operators for generating the optimal laser field. A variant that does not require saving the time-dependent wave function has been developed, where simultaneous forward and backward propagations are performed. Input parameters are concentrated in a single input. le analogous to the input files used elsewhere in MCTDH. We use here two simple examples to demonstrate the use of OCT-MCTDH: the modified Henon-Heiles potential and a two-dimensional model of acetylene. For both systems, a controlled transition between two vibrational states is tested. Results obtained with MCTDH and exact calculations are compared.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available