4.6 Article

Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocalalyst supports

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 10, Issue 10, Pages 1433-1442

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b714924g

Keywords

-

Ask authors/readers for more resources

We present a novel and facile synthesis methodology for obtaining graphitic carbon structures from Fe(II) and Co(II) gluconates. The formation of graphitic carbon can be carried Out ill only one step by means of heat treatment of these organic salts at a temperature of 900 degrees C or 1000 degrees C under inert atmosphere. This process consists of the following steps: (a) pyrolysis of the organic gluconate and its transformation to amorphous carbon, (b) conversion of Fe2+ and Co2+ ions to Fe2O3 arid CoO and their subsequent reduction to metallic nanoparticles by the carbon and (c) conversion of a fraction of formed amorphous carbon to graphitic structures by Fe and Co nanoparticles that act as catalysts in the graphitization process. The removal of the amorphous carbon and metallic nanoparticles by means of oxidative treatment (KMnO4 in an acid solution) allows graphitic carbon nanostructures (GCNs) to be selectively recovered. The GCNs thus obtained (i.e. nanocapsules and nanopipes) have a high crystallinity as evidenced by TEM/SAED, XRD and Raman analysis. In addition, we used these GCNs as supports for platinum nanoparticles, which were well dispersed (mean Pt size similar to 2.5-3.2 nm). Most electrocatalysts prepared in this way have a high electrocatalytical surface area, up to 90 m(2) g(-1) Pt, and exhibit high catalytic activities toward methanol electrooxidation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available