4.6 Article

The hydration of glucose: the local configurations in sugar-water hydrogen bonds

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 10, Issue 1, Pages 96-105

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b708719e

Keywords

-

Ask authors/readers for more resources

The hydration of a simple sugar is an essential model for understanding interactions between hydrophilic groups and interfacial water molecules. Here I perform first-principles molecular dynamics simulations on a glucose-water system and investigate how individual hydroxyl groups are locally hydrated. I demonstrate that the hydroxyl groups are less hydrated and more incompatible with a locally tetrahedral network of hydrogen bonds than previously thought. The results suggest that the hydroxyl groups form roughly two hydrogen bonds. Further, I find that the local hydration of the hydroxyl groups is sensitively affected by seemingly small variations in the local electronic structure and bond polarity of the groups. My findings offer insight into an atomic-level understanding of sugar-water interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available