4.6 Article

On the lifetimes and physical nature of incompletely relaxed electrons in liquid water

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 10, Issue 30, Pages 4463-4470

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b806287k

Keywords

-

Ask authors/readers for more resources

Despite intense study over the past two decades, the dynamics of electron solvation in water, particularly regarding the physical properties and lifetimes of non-equilibrium, incompletely relaxed electrons, remain very controversial. Both experimental and theoretical studies have reported a very diverse range, from similar to 50 to similar to 1000 fs, for the lifetime of the p-like excited state of the hydrated electron, and the nature of incompletely relaxed states remains unclear. Here, we reveal that these controversies are to a great extent due to a hidden effect, i.e., the universal existence of a coherence spike at delay time zero in pump-probe spectroscopic kinetics traces. After removing this spike effect, we show that the intrinsic lifetimes of the two incompletely relaxed states in bulk water are 180 +/- 30 and 545 +/- 30 fs, respectively. Moreover, our results using iododeoxyuridine as a molecular probe reveal that both states are electronically excited states of the hydrated electron and the second state of a 545 fs lifetime is the long-sought wet electron. These results resolve the long-standing controversies about electron hydration dynamics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available