4.3 Article

Predicting polaronic defect states by means of generalized Koopmans density functional calculations

Journal

PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
Volume 248, Issue 5, Pages 1052-1060

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssb.201046274

Keywords

defects; density functional theory; hybrid functionals; polarons

Funding

  1. U.S. Department of Energy [DE-AC36-08GO28308]

Ask authors/readers for more resources

Lattice defects in semiconductors and wide-gap materials which create deep levels in an open-shell electronic configuration can give rise to so-called defect bound small polarons. This type of defects present a challenge for electronic structure methods because the localization of the defect state and the associated energy levels depend sensitively on the ability of the total-energy functional to satisfy the physical condition that the energy E(N) must be a piecewise linear function of the fractional electron number N. For practical applications the requirement of a linear E(N) is re-cast as a generalized Koopmans condition. Since most functionals do not fulfill this condition accurately, we use parameterized perturbations that cancel the non-linearity of E(N) and recover the correct Koopmans behavior. Starting from standard density functionals, we compare two types of parameterized perturbations, i.e., the addition of on-site potentials and the mixing of non-local Fock exchange in hybrid-functionals. Surveying a range of acceptor-type defects in II-VI and III-V semiconductors, we present a classification scheme that describes the relation between hole localization and the lattice relaxation of the polaronic state. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available