4.5 Article

Plasmonics: Heat transfer between metal nanoparticles and supporting nanolayers

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.physe.2012.09.004

Keywords

-

Funding

  1. Swedish Energy Agency [NANO-SEE 181-1]
  2. Formas Grant [229-2009-779]

Ask authors/readers for more resources

Due to plasmon-related local field enhancement, metal nanoparticles can be used in conventional surface photochemistry and also in numerous applications, e.g., for optimization of the performance of thin film solar cells and photo-electrochemical cells employed for solar-to-fuel energy conversion. In the experimental model studies related to such cells, metal nanoparticles are located on or embedded into a 40-100 nm thick active photoabsorbing material (e.g., Si or Fe2O3), supported underneath by a similar to 1 mm thick glass layer. We present general equations describing heat transport in the layered systems of this type. The equations contain the coefficients of heat transfer between different nanophases. Using the Debye model, we derive an analytical expression for these coefficients. Our calculations show that for the energy flux corresponding to solar light the overheating is practically negligible. In more conventional surface photochemistry, the effect may be more appreciable with increasing the energy flux and support thickness. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available