4.7 Article

Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts

Journal

ULTRASONICS SONOCHEMISTRY
Volume 22, Issue -, Pages 287-299

Publisher

ELSEVIER
DOI: 10.1016/j.ultsonch.2014.06.008

Keywords

ZnO; Fe-ZnO; Sonolysis; Photocatalysis; Cavitation; Advanced oxidation process

Funding

  1. Department of Science and Technology, Government of India [SR/FST/ETII-028/2010]

Ask authors/readers for more resources

This paper attempts to investigate the mechanistic issues of two hybrid advanced oxidation processes (HAOPs), viz. sonocatalysis and sonophotocatalysis, in which the two individual AOPs, viz. sonolysis and photocatalysis, are combined. Three photocatalysts, viz. pure ZnO and Fe-doped ZnO (with two protocols) have been employed. Fe-doped ZnO catalyst has been characterized using standard techniques. Decolorization of two textile dyes has been used as the model reaction. With experiments that alter the characteristics of ultrasound and cavitation phenomena in the medium, the exact synergy between the two AOPs has been determined using a quantitative yard stick. The results revealed a negative synergy between the two AOPs, which is an almost consistent result for decolorization of both dyes using all three photocatalysts. Fe-doping of ZnO catalyst helps in generation of more (OH)-O-center dot radicals that could augment decolorization. However, these radical mainly react with dye molecules adsorbed on catalyst surface. Intense shock waves generated by cavitation bubbles cause desorption of dye molecules from catalyst surface and reduce the probability of dye-radical interaction, thus reducing the net utility of photochemically generated (OH)-O-center dot radicals towards dye decolorization. This is rationale underlying the negative synergy between sonolysis and photocatalysis. Fe-doped ZnO catalyst increases the extent of decolorization, but the synergy between the two individual AOPs remains unaltered with doping. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available