4.6 Article

Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators

Journal

PHYSICA D-NONLINEAR PHENOMENA
Volume 237, Issue 4, Pages 454-466

Publisher

ELSEVIER
DOI: 10.1016/j.physd.2007.09.015

Keywords

coupled phase oscillator; bifurcation; heteroclinic cycle

Funding

  1. Engineering and Physical Sciences Research Council [EP/C510771/1] Funding Source: researchfish

Ask authors/readers for more resources

We study the bifurcation and dynamical behaviour of the system of N globally coupled identical phase oscillators introduced by Hansel, Mato and Meunier, in the cases N = 3 and N = 4. This model has been found to exhibit robust 'slow switching' oscillations that are caused by the presence of robust heteroclinic attractors. This paper presents a bifurcation analysis of the system in an attempt to better understand the creation of such attractors. We consider bifurcations that occur in a system of identical oscillators on varying the parameters in the coupling function. These bifurcations preserve the permutation symmetry of the system. We then investigate the implications of these bifurcations for the sensitivity to detuning (i.e. the size of the smallest perturbations that give rise to loss of frequency locking). For N = 3 we find three types of heteroclinic bifurcation that are codimension-one with symmetry. On varying two parameters in the coupling function we find three curves giving (a) an S-3-transcritical homoclinic bifurcation, (b) a saddle-node/heteroclinic bifurcation and (c) a Z(3)-heteroclinic bifurcation. We also identify several global bifurcations with symmetry that organize the bifurcation diagram; these are codimension-two with symmetry. For N = 4 oscillators we determine many (but not all) codimension-one bifurcations with symmetry, including those that lead to a robust heteroclinic cycle. A robust heteroclinic cycle is stable in an open region of parameter space and unstable in another open region. Furthermore, we verify that there is a subregion where the heteroclinic cycle is the only attractor of the system, while for other parts of the phase plane it can coexist with stable limit cycles. We finish with a discussion of bifurcations that appear for this coupling function and general N, as well as for more general coupling functions. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available