4.6 Article

Architecture of the Florida power grid as a complex network

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.physa.2014.01.035

Keywords

Power grid; Generator-load mixing; Spatial network optimization; Monte Carlo cooling

Funding

  1. U.S. National Science Foundation [DMR-1104829]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1104829] Funding Source: National Science Foundation

Ask authors/readers for more resources

We study the Florida high-voltage power grid as a technological network embedded in space. Measurements of geographical lengths of transmission lines, the mixing of generators and loads, the weighted clustering coefficient, as well as the organization of edge conductance weights show a complex architecture quite different from random-graph models usually considered. In particular, we introduce a parametrized mixing matrix to characterize the mixing pattern of generators and loads in the Florida Grid, which is intermediate between the random mixing case and the semi-bipartite case where generator generator transmission lines are forbidden. Our observations motivate an investigation of optimization (design) principles leading to the structural organization of power grids. We thus propose two network optimization models for the Florida Grid as a case study. Our results show that the Florida Grid is optimized not only by reducing the construction cost (measured by the total length of power lines), but also through reducing the total pairwise edge resistance in the grid, which increases the robustness of power transmission between generators and loads against random line failures. We then embed our models in spatial areas of different aspect ratios and study how this geometric factor affects the network structure, as well as the box-counting fractal dimension of the grids generated by our models. (c) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available