4.4 Article

Using leaf optical properties to detect ozone effects on foliar biochemistry

Journal

PHOTOSYNTHESIS RESEARCH
Volume 119, Issue 1-2, Pages 65-76

Publisher

SPRINGER
DOI: 10.1007/s11120-013-9837-y

Keywords

Air pollution; Photochemical reflectance index; Photosynthesis; Remote sensing; Rubisco; Spectroscopy

Categories

Funding

  1. Agriculture and Food Research Initiative, USDA National Institute of Food and Agriculture [2010-65114-20355]
  2. NASA Earth and Space Science Fellowship [NNX08AV07H]
  3. NASA HyspIRI Preparatory Grant [NNX10AJ94G]
  4. NASA [131028, NNX10AJ94G, NNX08AV07H, 94179] Funding Source: Federal RePORTER
  5. NIFA [581490, 2010-65114-20355] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Efficient methods for accurate and meaningful high-throughput plant phenotyping are limiting the development and breeding of stress-tolerant crops. A number of emerging techniques, specifically remote sensing methods, have been identified as promising tools for plant phenotyping. These remote sensing methods can be used to accurately and rapidly relate variations in leaf optical properties with important plant characteristics, such as chemistry, morphology, and photosynthetic properties at the leaf and canopy scales. In this study, we explored the potential to utilize optical (lambda = 500-2,400 nm) near-surface remote sensing reflectance spectroscopy to evaluate the effects of ozone pollution on photosynthetic capacity of soybean (Glycine max Merr.). The research was conducted at the Soybean Free Air Concentration Enrichment (SoyFACE) facility where we subjected plants to ambient (44 nL L-1) and elevated ozone (79-82 nL L-1 target) concentrations throughout the growing season. Exposure to elevated ozone resulted in a significant loss of productivity, with the ozone-treated plants displaying a similar to 30 % average decrease in seed yield. From leaf reflectance data, it was also clear that elevated ozone decreased leaf nitrogen and chlorophyll content as well as the photochemical reflectance index (PRI), an optical indicator of the epoxidation state of xanthophyll cycle pigments and thus physiological status. We assessed the potential to use leaf reflectance properties and partial least-squares regression (PLSR) modeling as an alternative, rapid approach to standard gas exchange for the estimation of the maximum rates of RuBP carboxylation (V (c,max)), an important parameter describing plant photosynthetic capacity. While we did not find a significant impact of ozone fumigation on V (c,max), standardized to a reference temperature of 25 A degrees C, the PLSR approach provided accurate and precise estimates of V (c,max) across ambient plots and ozone treatments (r (2) = 0.88 and RMSE = 13.4 mu mol m(-2) s(-1)) based only on the variation in leaf optical properties and despite significant variability in leaf nutritional status. The results of this study illustrate the potential for combining the phenotyping methods used here with high-throughput genotyping methods as a promising approach for elucidating the basis for ozone tolerance in sensitive crops.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available