4.4 Article

Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy

Journal

PHOTOSYNTHESIS RESEARCH
Volume 111, Issue 1-2, Pages 71-79

Publisher

SPRINGER
DOI: 10.1007/s11120-011-9693-6

Keywords

Circular dichroism; Diatom; Non-photochemical quenching; Small-angle neutron scattering; Thylakoid membranes; Ultrastructure

Categories

Funding

  1. Marie Curie Initial Training Network HARVEST''
  2. European Union [238017]
  3. National Office for Research and Technology [80345, NAP-VENEUS05]
  4. Bourse du Gouvernement Francais

Ask authors/readers for more resources

Diatoms possess effective photoprotection mechanisms, which may involve reorganizations in the photosynthetic machinery. We have shown earlier, by using circular dichroism(CD) spectroscopy, that in Phaeodactylum tricornutumthe pigment-protein complexes are arranged into chiral macrodomains, which have been proposed to be associated with the multilamellar organization of the thylakoid membranes and shown to be capable of undergoing light-induced reversible reorganizations (Szabo et al. Photosynth Res 95: 237, 2008). Recently, by using small-angle neutron scattering (SANS) on the same algal cells we have determined the repeat distances and revealed reversible light-induced reorganizations in the lamellar order of thylakoids (Nagy et al. Biochem J 436: 225, 2011). In this study, we show that in moderately heat-treated samples, the weakening of the lamellar order is accompanied by the diminishment of the psi-type CD signal associated with the long-range chiral order of the chromophores (psi, polymer or salt-induced). Further, we show that the light-induced reversible increase in the psi-type CD is associated with swelling in the membrane system, with magnitudes larger in high light than in low light. In contrast, shrinkage of the membrane system, induced by sorbitol, brings about a decrease in the psi-type CD signal; this shrinkage also diminishes the non-photochemical quenching capability of the cells. These data shed light on the origin of the psi-type CD signal, and confirm that both CD spectroscopy and SANS provide valuable information on the macro-organization of the thylakoid membranes and their dynamic properties; these parameters are evidently of interest with regard to the photoprotection in whole algal cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available