4.4 Review

Microalgal biomass production: challenges and realities

Journal

PHOTOSYNTHESIS RESEARCH
Volume 106, Issue 1-2, Pages 135-144

Publisher

SPRINGER
DOI: 10.1007/s11120-010-9573-5

Keywords

Mass microalgal cultures; Quantum efficiency; Photobioreactor; Light fluctuations; Biofuels

Categories

Ask authors/readers for more resources

The maximum quantum yield (Phi(max)), calculated from the maximum chlorophyll a specific photosynthetic rate divided by the quantum absorption per unit chlorophyll a, is 8 photons or 0.125 mol C per mol Quanta light energy. For the average solar radiation that reaches the earth's surface this relates to a photosynthetic yield of 1.79 g(dw) m(-2) day(-1) per percentage photosynthetic efficiency and it could be doubled for sunny, dry and hot areas. Many factors determine volumetric yields of mass algal cultures and it is not simply a question of extrapolating controlled laboratory rates to large scale outdoor production systems. This is an obvious mistake many algal biotechnology start-up companies make. Closed photobioreactors should be able to outperform open raceway pond cultures because of the synergistic enhancement of a reduced boundary layer and short light/dark fluctuations at high turbulences. However, this has not been shown on any large scale and to date the industrial norm for very large production systems is open raceway production ponds. Microalgal biomass production offers real opportunities for addressing issues such as CO2 sequestration, biofuel production and wastewater treatment, and it should be the preferred research emphasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available