4.4 Article

Method for resolution and quantification of components of the non-photochemical quenching (q N)

Journal

PHOTOSYNTHESIS RESEARCH
Volume 105, Issue 2, Pages 101-113

Publisher

SPRINGER
DOI: 10.1007/s11120-010-9564-6

Keywords

Dark relaxation; Delta pH-dependent quenching; Fluorescence induction kinetics; Multi-exponential regression; Non-photochemical quenching; Photoinhibitory quenching; Photosystem II; State-transition quenching

Categories

Funding

  1. Grant Agency of the Academy of Sciences of the Czech Republic [IAA600960716, AV0Z 50510513]

Ask authors/readers for more resources

A new method of the chlorophyll (Chl) a fluorescence quenching analysis is described, which allows the calculation of values of (at least) three components of the non-photochemical quenching of the variable Chl a fluorescence (q (N)) using a non-linear regression of a multi-exponential function within experimental data. Formulae for coefficients of the energy-dependent (Delta pH-dependent) quenching (q (E)), the state-transition quenching (q (T)) and the photo/inhibitory quenching (q (I)) of Chl a fluorescence were found on the basis of three assumptions: (i) the dark relaxation kinetics of q (N), as well as of all its components, is of an exponential nature, (ii) the superposition principle is valid for individual Chl a fluorescence quenching processes and (iii) the same reference fluorescence level (namely the maximum variable Chl a fluorescence yield in the dark-adapted state, F (V)) is used to define both q (N) and its components. All definitions as well as the algorithms for analytical recognition of the q (N) components are theoretically clarified and experimentally tested. The described theory results in a rather simple equation allowing to compute values for all q (N) components (q (E), q (T), q (I)) as well as the half-times of relaxation (tau(1/2)) of corresponding quenching processes. It is demonstrated that under the above assumptions it holds: q (N) = q (E) + q (T) + q (I). The theoretically derived equations are tested, and the results obtained are discussed for non-stressed and stressed photosynthetically active samples. Semi-empirical formulae for a fast estimation of values of the q (N) components from experimental data are also given.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available