4.4 Article Proceedings Paper

Plasmonic organic photovoltaics doped with metal nanoparticles

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.photonics.2010.09.001

Keywords

Plasmonic organic photovoltaics; Metal nanoparticles; Current density; Power conversion efficiency

Ask authors/readers for more resources

The present paper aims at realizing high efficiency organic photovoltaic devices using plasmonic metallic nanostructures. In particular, Ag and Au nanoparticles, produced by ultrafast laser ablation in liquids, were embedded in the photoactive layer of polymer fullerene bulk heterojunction photovoltaic devices. It was shown that doping with plasmonic nanoparticles leads to a power conversion efficiency improvement that can reach 20%. This increase can be attributed to improved short-circuit current due to an enhanced absorption of the photoactive layer caused by localized surface plasmon resonances of the conduction electrons within the particles. This argument was supported by the combinatorial study of the optical properties of the nanoparticles and the photon-to-electron conversion efficiency of the polymer-fullerene-nanoparticle devices. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available