4.4 Article

The Ability of Cyanobacterial Cells to Restore UV-B Radiation Induced Damage to Photosystem II is Influenced by Photolyase Dependent DNA Repair

Journal

PHOTOCHEMISTRY AND PHOTOBIOLOGY
Volume 89, Issue 2, Pages 384-390

Publisher

WILEY-BLACKWELL
DOI: 10.1111/php.12012

Keywords

-

Funding

  1. Hungarian granting agency OTKA [K-84257]
  2. Hungarian-New Zealand TET program [10_10-1-2011-0003]

Ask authors/readers for more resources

Damage of DNA and Photosystem-II are among the most significant effects of UV-B irradiation in photosynthetic organisms. Both damaged DNA and Photosystem-II can be repaired, which represent important defense mechanisms against detrimental UV-B effects. Correlation of Photosystem-II damage and repair with the concurrent DNA damage and repair was investigated in the cyanobacterium Synechocystis PCC6803 using its wild type and a photolyase deficient mutant, which is unable to repair UV-B induced DNA damages. A significant amount of damaged DNA accumulated during UV-B exposure in the photolyase mutant concomitant with decreased Photosystem-II activity and D1 protein amount. The transcript level of psbA3, which is a UV-responsive copy of the psbA gene family encoding the D1 subunit of the Photosystem-II reaction center, is also decreased in the photolyase mutant. The wild-type cells, however, did not accumulate damaged DNA during UV-B exposure, suffered smaller losses of Photosystem-II activity and D1 protein, and maintained higher level of psbA3 transcripts than the photolyase mutant. It is concluded that the repair capacity of Photosystem-II depends on the ability of cells to repair UV-B-damaged DNA through maintaining the transcription of genes, which are essential for protein synthesis-dependent repair of the Photosystem-II reaction center.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available