4.4 Article

DNA Damage and Apoptosis Induced by Photosensitization of 5,10,15,20-Tetrakis (N-methyl-4-pyridyl)-21H,23H-porphyrin via Singlet Oxygen Generation

Journal

PHOTOCHEMISTRY AND PHOTOBIOLOGY
Volume 85, Issue 6, Pages 1391-1399

Publisher

WILEY
DOI: 10.1111/j.1751-1097.2009.00600.x

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. Grants-in-Aid for Scientific Research [21390195] Funding Source: KAKEN

Ask authors/readers for more resources

Cancer photodynamic therapy (PDT) requires photosensitizers that efficiently and selectively destroy tumor cells. We investigated 5,10,15,20-tetrakis (N-methyl-4-pyridyl)-21H,23H-porphyrin (TMPyP) as a potential cancer treatment. Confocal fluorescence microscopy showed that TMPyP was localized in the nuclei, whereas 5-aminolevulinic acid (ALA)-derived protoporphyrin IX ( PPIX) was localized diffusely in the cytoplasm of human leukemia (HL-60) cells. In HL-60 cells under UVA irradiation, TMPyP effectively induced apoptosis. Moreover, 8-oxo-7,8-dihydro-2'-deoxyguanosine, an oxidative product of 2'-deoxyguanosine, was accumulated in the DNA of cells treated with photoirradiated TMPyP, whereas only small amounts were observed in ALA-treated cells in the presence of UVA light. TMPyP and UVA caused extensive damage at every guanine residue in DNA fragments obtained from the human p53 tumor suppressor gene and the c-Ha-ras-1 proto-oncogene, whereas PPIX induced little DNA damage under these conditions. Electron spin resonance spectroscopy using a singlet oxygen (O-1(2)) probe and D2O showed that photoexcited TMPyP generated O-1(2). These results suggest that photoexcited TMPyP reacts with oxygen to generate O-1(2), which in turn, oxidizes guanine residues. Taken together, the results demonstrated that TMPyP was localized in the nucleus where it was photosensitized to induce DNA damage, suggesting that TMPyP may have clinical utility as a nucleus-targeted PDT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available