4.6 Review

The costs of being male: are there sex-specific effects of uniparental mitochondrial inheritance?

Publisher

ROYAL SOC
DOI: 10.1098/rstb.2013.0440

Keywords

genomic conflict; mito-nuclear interactions; mito-nuclear coevolution; uniparental inheritance

Categories

Funding

  1. Australian Research Council [FT120100120, DP140100560, DP1092897, DP120103205]
  2. ALW/NWO [040.11.399]
  3. Australian Research Council [DP1092897] Funding Source: Australian Research Council

Ask authors/readers for more resources

Eukaryotic cells typically contain numerous mitochondria, each with multiple copies of their own genome, the mtDNA. Uniparental transmission of mitochondria, usually via the mother, prevents the mixing of mtDNA from different individuals. While on the one hand, this should resolve the potential for selection for fast-replicating mtDNA variants that reduce organismal fitness, maternal inheritance will, in theory, come with another set of problems that are specifically relevant to males. Maternal inheritance implies that the mitochondrial genome is never transmitted through males, and thus selection can target only the mtDNA sequence when carried by females. A consequence is that mtDNA mutations that confer male-biased phenotypic expression will be prone to evade selection, and accumulate. Here, we review the evidence from the ecological, evolutionary and medical literature for male specificity of mtDNA mutations affecting fertility, health and ageing. While such effects have been discovered experimentally in the laboratory, their relevance to natural populations-including the human population-remains unclear. We suggest that the existence of male expression-biased mtDNA mutations is likely to be a broad phenomenon, but that these mutations remain cryptic owing to the presence of counter-adapted nuclear compensatory modifier mutations, which offset their deleterious effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available