4.6 Review

Correlation and studies of habitat selection: problem, red herring or opportunity?

Journal

Publisher

ROYAL SOC
DOI: 10.1098/rstb.2010.0079

Keywords

generalized estimating equation; generalized linear mixed model; hierarchical model; resource-selection function; telemetry; use-availability

Categories

Funding

  1. Edmund Mach Foundation
  2. Natural Environment Research Council [smru10001] Funding Source: researchfish

Ask authors/readers for more resources

With the advent of new technologies, animal locations are being collected at ever finer spatio-temporal scales. We review analytical methods for dealing with correlated data in the context of resource selection, including post hoc variance inflation techniques, 'two-stage' approaches based on models fit to each individual, generalized estimating equations and hierarchical mixed-effects models. These methods are applicable to a wide range of correlated data problems, but can be difficult to apply and remain especially challenging for use-availability sampling designs because the correlation structure for combinations of used and available points are not likely to follow common parametric forms. We also review emerging approaches to studying habitat selection that use fine-scale temporal data to arrive at biologically based definitions of available habitat, while naturally accounting for autocorrelation by modelling animal movement between telemetry locations. Sophisticated analyses that explicitly model correlation rather than consider it a nuisance, like mixed effects and state-space models, offer potentially novel insights into the process of resource selection, but additional work is needed to make them more generally applicable to large datasets based on the use-availability designs. Until then, variance inflation techniques and two-stage approaches should offer pragmatic and flexible approaches to modelling correlated data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available