4.6 Review

CLC-mediated anion transport in plant cells

Publisher

ROYAL SOC
DOI: 10.1098/rstb.2008.0128

Keywords

plant chloride channels; anion transport; nitrate; vacuole; transporter/channel; Arabidopsis thaliana

Categories

Funding

  1. EU-RTN Project VaTEP 'Vacuolar transport equipment for growth regulation in plants' [MRTN-CT-2006 035833]
  2. CNR-CNRS

Ask authors/readers for more resources

Plants need nitrate for growth and store the major part of it in the central vacuole of cells from root and shoot tissues. Based on few studies on the two model plants Arabidopsis thaliana and rice, members of the large ChLoride Channel (CLC) family have been proposed to encode anion channels/transporters involved in nitrate homeostasis. Proteins from the Arabidopsis CLC family (AtClC, comprising seven members) are present in various membrane compartments including the vacuolar membrane (AtClCa), Golgi vesicles (AtClCd and AtClCf) or chloroplast membranes (AtClCe). Through a combination of electrophysiological and genetic approaches, AtClCa was shown to function as a 2NO(3)(-)/1H(+) exchanger that is able to accumulate specifically nitrate into the vacuole, in agreement with the main phenotypic trait of knockout mutant plants that accumulate 50 per cent less nitrate than their wild-type counterparts. The set-up of a functional complementation assay relying on transient expression of AtClCa cDNA in the mutant background opens the way for studies on structure-function relationships of the AtClCa nitrate transporter. Such studies will reveal whether important structural determinants identified in bacterial or mammalian CLCs are also crucial for AtClCa transport activity and regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available