4.6 Article

High-resolution structure of the photosynthetic Mn4Ca catalyst from X-ray spectroscopy

Journal

Publisher

ROYAL SOC
DOI: 10.1098/rstb.2007.2209

Keywords

X-ray absorption fine structure; manganese; oxygen-evolving complex; polarized X-ray absorption fine structure; photosystem II; photosystem II single crystals

Categories

Funding

  1. NIGMS NIH HHS [R01 GM055302, R56 GM055302, GM 55302] Funding Source: Medline

Ask authors/readers for more resources

The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, is described. Issues of X-ray damage, especially at the metal sites in the Mn4Ca cluster, are discussed. The structure of the Mn4Ca catalyst at high resolution, which has so far eluded attempts of determination by X-ray diffraction, X-ray absorption fine structure (EXAFS) and other spectroscopic techniques, has been addressed using polarized EXAFS techniques applied to oriented photosystem II (PSII) membrane preparations and PSII single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS, is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K beta emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available