4.5 Article

Modelling sarcoplasmic reticulum calcium ATPase and its regulation in cardiac myocytes

Publisher

ROYAL SOC
DOI: 10.1098/rsta.2008.0304

Keywords

heart; calcium; sarcoplasmic reticulum Ca2+ ATPase; mathematical modelling

Funding

  1. Biocenter Oulu Graduate School
  2. Academy of Finland
  3. Sigrid Juselius Foundation

Ask authors/readers for more resources

When developing large-scale mathematical models of physiology, some reduction in complexity is necessarily required to maintain computational efficiency. A prime example of such an intricate cell is the cardiac myocyte. For the predictive power of the cardiomyocyte models, it is vital to accurately describe the calcium transport mechanisms, since they essentially link the electrical activation to contractility. The removal of calcium from the cytoplasm takes place mainly by the Na+/Ca2(+) exchanger, and the sarcoplasmic reticulum Ca2+ ATPase (SERCA). In the present study, we review the properties of SERCA, its frequency-dependent and beta-adrenergic regulation, and the approaches of mathematical modelling that have been used to investigate its function. Furthermore, we present novel theoretical considerations that might prove useful for the elucidation of the role of SERCA in cardiac function, achieving a reduction in model complexity, but at the same time retaining the central aspects of its function. Our results indicate that to faithfully predict the physiological properties of SERCA, we should take into account the calcium-buffering effect and reversible function of the pump. This 'uncomplicated' modelling approach could be useful to other similar transport mechanisms as well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available