4.4 Article

Elastohydrodynamic problems in quasicrystal elasticity theory and wave propagation

Journal

PHILOSOPHICAL MAGAZINE
Volume 93, Issue 13, Pages 1500-1519

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/14786435.2012.745655

Keywords

quasicrystals; elasticity; elastohydrodynamics; phason field; hyperbolic diffusion equation

Ask authors/readers for more resources

Elastohydrodynamic problems of decagonal quasicrystals are analysed where the phonon field obeys wave equation and the phason field obeys diffusive wave equation. Basic equations are solved in the quasiperiodic plane and periodic plane, respectively. Final governing equations of dynamic behaviours of decagonal quasicrystals are obtained. A general solution is derived in terms of introduced three auxiliary functions, where two individually satisfy a fourth-order partial differential equation and one satisfies a second-order hyperbolic diffusion equation. Using the derived governing equations, elastic waves propagating in the quasiperiodic plane and a plane containing the period axis are analysed. Secular equations are obtained. It is found that differing from conventional crystals, at least four branches of elastic waves exist when the phononphason coupling is present. Moreover, acoustic waves have attenuation during wave propagation. Phason fluctuations exhibit exponential decaying behaviour due to kinematic viscosity and damping. The phase speeds are isotropic in the quasiperiodic plane and anisotropic in a plane with the periodic axis. The section of the slowness surfaces is plotted.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available