4.4 Article

Disodium disuccinate astaxanthin prevents carotid artery rethrombosis and ex vivo platelet activation

Journal

PHARMACOLOGY
Volume 82, Issue 1, Pages 67-73

Publisher

KARGER
DOI: 10.1159/000132085

Keywords

free-radical scavengers; reactive oxygen species; thrombolysis; thrombosis

Ask authors/readers for more resources

Background/Aims: The disodium disuccinate derivative of astaxanthin (DDA) is a carotenoid antioxidant under development for the treatment of ischemic cardiovascular events. Recent evidence suggests that reactive oxygen species (ROS) play an important role in platelet activation. This study seeks to investigate the effects of a reactive oxygen species quencher, DDA, in a canine model of carotid artery thrombosis. Methods: After formation of an occlusive carotid thrombus, dogs were administered recombinant tissue plasminogen activator intra-arterially to achieve thrombolysis in the presence of either 0.9% NaCl solution or DDA (10-50 mg/kg i.v. infusion). Ex vivo platelet aggregation and tongue bleeding times were measured before and after drug administration. Residual thrombus mass was analyzed at the end of each experiment. Results: The data indicated a dose-dependent reduction in the incidence of carotid artery rethrombosis. In addition, platelet aggregation and thrombus weights were dose-dependently inhibited by DDA. No change was recorded in tongue bleeding time among the treatment groups. Conclusions: The data demonstrate that at the doses used in this study, DDA significantly reduced the incidence of secondary thrombosis while maintaining normal hemostasis. The results suggest that upon further study, DDA may one day find utility in revascularization procedures. Copyright (c) 2008 S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available