4.7 Article

Lercanidipine inhibits vascular smooth muscle cell proliferation and neointimal formation via reducing intracellular reactive oxygen species and inactivating Ras-ERK1/2 signaling

Journal

PHARMACOLOGICAL RESEARCH
Volume 59, Issue 1, Pages 48-56

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phrs.2008.09.015

Keywords

Lercanidipine; Vascular smooth muscle cell; Platelet-derived growth factor; MAP kinase; Reactive oxygen species

Funding

  1. National Science Council of Taiwan [NSC 93-2314-B-037-048, NSC 94-2320-B-037-042]

Ask authors/readers for more resources

Lercanidipine, a calcium channel antagonist, is currently employed in the treatment of essential hypertension and angina pectoris. The purpose of this study was to elucidate the anti-proliferative effect of lercanidipine and to investigate the molecular role of this agent. Both in vitro studies and in a balloon injury rat carotid artery model were employed to study the effect of lercanidipine on smooth muscle cell proliferation. Lercanidipine-inhibited rat vascular smooth muscle cell (VSMC) proliferation and migration in a dose-dependent manner following stimulation of VSMC cultures with 10% fetal bovine serum (FBS) and 20 ng/ml plate let-derived growth factor (PDGF)-BB. FBS- and PDGF-BB-stimulated intracellular Ras, MEK1/2, ERK1/2, proliferative cell nuclear antigen (PCNA), and Akt activations were significantly inhibited by lercanidipine; however, lercanidipine did not affect FBS- and PDGF-BB-induced STAT3 phosphorylation. Lercanidipine also inhibited PDGF-receptor P chain phosphorylation and reactive oxygen species (ROS) production induced by PDGF-BB. Lercanidipine blocked the FBS-inducible progression through the G(0)/G(1) to the S-phase of the cell cycle in synchronized cells. In vivo, 14 days after balloon injury, treatment with 3 and 10 mg/kg lercanidipine resulted in significant inhibition of the neointima/media ratio. Suppression of neointima formation by lercanidipine was dependent on its influence on ERK1/2 phosphorylation. These results demonstrate that lercanidipine can suppress the proliferation of VSMCs via inhibiting cellular ROS, Ras-MEK1/2-ERK1/2, and PI3K-Akt pathways, and suggesting that it may have therapeutic relevance in the prevention of human restenosis. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available