4.1 Article

MicroRNA-218 regulates cisplatin (DPP) chemosensitivity in non-small cell lung cancer by targeting RUNX2

Journal

TUMOR BIOLOGY
Volume 37, Issue 1, Pages 1197-1204

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1007/s13277-015-3831-2

Keywords

miR-218; RUNX2; Cisplatin (DDP); Chemosensitivity; NSCLC

Categories

Funding

  1. health system advanced appropriate technology promotion project of Shanghai in China [2013SY036]

Ask authors/readers for more resources

Downregulation of microRNA-218 (miR-218) is found in various human cancers, including non-small cell lung cancer (NSCLC). However, the involvement of chemosensitivity to cisplatin (DDP) and the underlying molecular mechanism remain unclear. In this study, we investigate whether miR-218 mediates NSCLC cell functions associated with chemoresistance. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect miR-218 expression in NSCLC cell lines A549/DDP and/or A549. The cell activity was measured by MTT assay. Cell cycle and cell apoptosis were detected by flow cytometry. Luciferase reporter assays and Western blots were used to validate runt-related transcription factor 2 (RUNX2) as a direct target gene of miR-218. miR-218 was significantly reduced in A549/DDP cells compared with parent A549 cells. Upregulation of miR-218 altered cell cycle-induced cell apoptosis and enhanced the sensitivity of A549/DDP cells to cisplatin. Mechanistically, RUNX2 was identified as a direct and functional target of miR-218, and RUNX2 executed the former on lung cancer chemoresistance. Our present study demonstrated for the first time that downregulation of miR-218 may contribute to the chemoresistance of NSCLC cells to cisplatin, which leads to upregulation of RUNX2. Uncovering the mechanism represents a novel approach to enhance the efficacy of chemotherapy during cancer treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available