4.5 Article

Preparation, Characterization, and Release of Amoxicillin from Electrospun Fibrous Wound Dressing Patches

Journal

PHARMACEUTICAL RESEARCH
Volume 30, Issue 7, Pages 1926-1938

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11095-013-1035-2

Keywords

amoxicillin; drug delivery; electrospinning; fibre; wound dressing

Funding

  1. University College London
  2. EPSRC [EP/I021795/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/I021795/1] Funding Source: researchfish

Ask authors/readers for more resources

To produce electrospun polymeric fibrous wound dressing patches that can release the antibiotic drug amoxicillin in a controlled manner. Poly(D,L-lactide-co-glycolide) acid (PLGA) fibrous dressings with entrapped amoxicillin were produced by electrospinning. The morphology and successful entrapment of amoxicillin in the PLGA fibrous dressings were validated by scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. The rate of drug release from the dressing patches was measured in various media for a period of 21 days using UV spectroscopy. PLGA fibres entrapping amoxicillin were collected for 300 s and then cut to form square patches with an average weight of 55 mg. Each dressing patch contained similar to 2 mg of amoxicillin. The mean fibre diameter was 2.2 +/- 0.4 mu m. The drug release from the PLGA dressings was found to be different for each medium during the 21-day release period with the highest and lowest concentration of drug released observed when the dressings were immersed in simulated body fluid (SBF) and phosphate buffered saline (PBS), respectively. The release profiles obtained in this study and the well-established biocompatibility of PLGA indicate that the fibre-based patches with entrapped amoxicillin fabricated in this work are very well suited for applications in wound healing and infection control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available