4.5 Article

pH-Sensitive Multi-PEGylated Block Copolymer as a Bioresponsive pDNA Delivery Vector

Journal

PHARMACEUTICAL RESEARCH
Volume 27, Issue 11, Pages 2260-2273

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11095-010-0092-z

Keywords

non-viral gene delivery; PEG; pH-sensitive; polyplex

Funding

  1. NIAID NIH HHS [R01 AI043346] Funding Source: Medline

Ask authors/readers for more resources

A reversibly-PEGylated diblock copolymer, poly(aspartate-hydrazide-poly(ethylene glycol))-block-poly(aspartate-diaminoethane) (p[Asp(Hyd-PEG)]-b-p[Asp(DET)]) was reported here for enhanced gene transfection and colloidal stability. The diblock copolymer possessed a unique architecture based on a poly(aspartamide) backbone. The first block, p[Asp(Hyd)], was used for multi-PEG conjugations, and the second block, p[Asp(DET)], was used for DNA condensation and endosomal escape. p[Asp(Hyd-PEG)]-b-p[Asp(DET)] was synthesized and characterized by H-1-NMR. Polyplexes were formed by mixing the synthesized polymers and pDNA. The polyplex size, zeta-potential, and in vitro transfection efficiency were determined by dynamic light scattering, zeta-potential measurements, and luciferase assays, respectively. pH-dependent release of PEG from the polymer was monitored by cationic-exchange chromatography. The polyplexes were 70-90 nm in size, and the surface charge was effectively shielded by a PEG layer. The transfection efficiency of the reversibly PEGylated polyplexes was confirmed to be comparable to that of the non-PEGylated counterparts and 1,000 times higher than that of the irreversibly PEGylated polyplexes. PEG release was demonstrated to be pH-sensitive. Fifty percent of the PEG was released within 30 min at pH 5, while the polymer incubated at pH 7.4 could still maintain 50% of PEG after 8 h. The reversibly PEGylated polyplexes were shown to maintain polyplex stability without compromising transfection efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available