4.5 Article

Nanoparticle Coated Submicron Emulsions: Sustained In-vitro Release and Improved Dermal Delivery of All trans-retinol

Journal

PHARMACEUTICAL RESEARCH
Volume 26, Issue 7, Pages 1764-1775

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11095-009-9888-0

Keywords

all-trans-retinol; in-vitro release; silica nanoparticles; skin penetration/permeation; submicron emulsion

Ask authors/readers for more resources

The aim of this research is to investigate the dermal delivery of all-trans-retinol from nanoparticle-coated submicron oil-in-water emulsions as a function of the initial emulsifier type, the loading phase of nanoparticles, and the interfacial structure of nanoparticle layers. The interfacial structure of emulsions was characterized using freeze-fracture-SEM. In-vitro release and skin penetration of all-trans-retinol were studied using Franz diffusion cells with cellulose acetate membrane, and excised porcine skin. The distribution profile was obtained by horizontal sectioning of the skin using microtome-cryostat and HPLC assay. The steady-state flux of all-trans-retinol from silica-coated lecithin emulsions was decreased (up to 90%) and was highly dependent on the initial loading phase of nanoparticles; incorporation from the aqueous phase provided more pronounced sustained release. For oleylamine emulsions, sustained release effect was not affected by initial location of nanoparticles. The skin retention significantly (p <= 0.05) increased and was higher for positive oleylamine-stabilised droplets. All-trans-retinol was mainly localized in the epidermis with deeper distribution to viable skin layers in the presence of nanoparticles, yet negligible permeation (similar to 1% of topically applied dose) through full-thickness skin. Sustained release and targeted dermal delivery of all-trans-retinol from oil-in-water emulsions by inclusion of silica nanoparticles is demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available