4.2 Article

Development and application of single-tube multiplex real-time PCR for lineage classification of Mycobacterium tuberculosis based on large sequence polymorphism in Northeast Thailand

Journal

TUBERCULOSIS
Volume 95, Issue 4, Pages 404-410

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.tube.2015.04.009

Keywords

Large sequence polymorphism; Multiplex real-time PCR; Mycobacterium tuberculosis; Northeast Thailand

Funding

  1. Researcher Incubation Project
  2. Khon Kaen University
  3. Higher Education Research Promotion
  4. National Research University Project of Thailand, Office of the Higher Education Commission, Thailand

Ask authors/readers for more resources

An appreciation of the genetic diversity of Mycobacterium tuberculosis (Mtb) is needed for effective planning of strategies in tuberculosis (TB) control. Large sequence polymorphisms (LSPs) are the molecular epidemiological and evolutionary markers for classification of Mtb into East Asian (EA) or Beijing, Indo-Oceanic (IO), Euro-American (EuA) and East African-Indian (EAI) lineages. We aimed to develop a single-tube multiplex real-time PCR assay using melting curve analysis for lineage classification of Mtb based on LSPs. The technique was optimized and tested with well-characterized strains (n = 89). The developed technique was then applied to classify Mtb isolates from TB patients (n = 256) randomly recruited from 19 provinces covering Northeast Thailand in 2013-2014. The technique demonstrated 100% sensitivity and specificity based on well-characterized strains compared to conventional techniques. The detection limit of the technique is 0.05 ng of genomic DNA of Mtb. The 256 Mtb isolates represented IO (n = 178, 70%), Beijing (n = 60, 23%) and EuA (n = 18, 7%) lineages. Significant associations of the Beijing lineage with drug resistance (p < 0.001) and younger average age of TB patients (p < 0.001) compared to other lineages were shown. The single-tube multiplex real-time PCR technique provides a simple, rapid and high performance tool for characterizing Mtb based on LSPs. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available