4.4 Article

Acidic priming enhances metastatic potential of cancer cells

Journal

PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY
Volume 466, Issue 11, Pages 2127-2138

Publisher

SPRINGER
DOI: 10.1007/s00424-014-1458-6

Keywords

Acidosis; Metastases formation; Migration; MAP kinases

Categories

Funding

  1. Deutsche Krebshilfe [106774/106906]
  2. BMBF [ProNet-T3 Ta-04]
  3. Wilhelm-Roux program of the Medical School, Universitat Halle-Wittenberg

Ask authors/readers for more resources

Metabolic acidosis is a common feature of tumor microenvironment and may affect the phenotype of tumor cells, including invasive capacity and formation of metastases. We tested whether previous exposure to an acidic environment alters metastatic potential of two rat carcinoma cell lines in the animal model. In addition, we determined the effect of an acidic environment on motility and invasive capacity of AT-1 prostate carcinoma cells in culture. Exposure of tumor cells to an acidic environment (pH 6.6, 5 % CO2, 6 h) prior to tail vein injection in rats enhanced formation of lung metastases significantly. In culture, acidosis increased cellular motility of AT-1 cells. When the tumor cells were transferred back to pH 7.4, enhanced motility persisted for at least 3 h but vanished after longer periods (24 h), therefore presenting a short-term memory effect. Although acidosis augmented phosphorylation of ERK1/2 and p38, and inhibition of ERK1/2 phosphorylation or of p38 kinase activity reduced basal motility at pH 7.4, acidosis-induced increase in motility was not dependent on ERK1/2 or p38 kinase. Src family kinases were not involved either. By contrast, scavenging reactive oxygen species (ROS), known to be increased in AT-1 cells under acidic conditions, blunted acidosis-induced motility increase. Our data indicate that tumor cells may acquire enhanced motility in an acidic micromilieu, at least in part due to enhanced ROS formation. Because enhanced motility persists for at least 3 h after leaving the acidic environment, this may promote metastasis formation, as observed in our in vivo model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available