4.4 Article

Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity

Journal

PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY
Volume 461, Issue 1, Pages 123-139

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00424-010-0884-3

Keywords

Ligand-gated; Ion channel; DRG neurons; Acidification; ASIC; TRPV1; pH dependence; Temperature; Dorsal root ganglion; Acidosis; TRP channels

Categories

Funding

  1. Swiss National Science Foundation [31003A0-117717]

Ask authors/readers for more resources

Acid-sensing ion channels (ASICs) are neuronal H+-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H+-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H+-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H+-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35 degrees C in the pH range >= 6.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available