4.1 Article

Genesis of mineralized cavities (Miaroles) in granitic pegmatites and granites

Journal

PETROLOGY
Volume 18, Issue 2, Pages 183-208

Publisher

PLEIADES PUBLISHING INC
DOI: 10.1134/S0869591110020062

Keywords

-

Funding

  1. Russian Foundation for Basic Research [08-05-00471]

Ask authors/readers for more resources

Analysis the development of large fluid segregations in a flux of small fluid bubbles during the degassing of granitic (pegmatitic) melts indicates that the velocity of the buoyant ascent of fluid bubbles depends on their sizes, the viscosity and density of the melts, and the duration of melt flow. Possible variants of the primary and secondary boiling of magma are discussed depending on the P-T conditions and concentrations of H2O, F, B, and other components dissolved in the magma. The possible density ranges of the fluid phases are considered, along with the viscosity and density of granitic (pegmatitic) melts, velocities of the buoyant ascent of fluid bubbles in them, and the processes of their coalescence and accumulation in the temperature range of 650-850A degrees C. Provisional evaluates are obtained for the duration of melt crystallization and the development of intrusive massifs and dikes of granites and syngenetic intragranite and epigenetic (intruded into the host rocks) granite pegmatites. Simulation data and geological observations suggest that large fluid segregations were formed already in the magma chambers in which the heterogeneous granite (pegmatitic) magma was derived, before its emplacement into the host rocks. These generation regions could be magma chamber areas within granite intrusions, in which melts enriched in volatiles were accumulated and then degassed with the release of fluid phases of various composition and density. The crystallization of fluid-rich melts under favorable conditions gives rise to granites with miarolitic structures. The emplacement of heterogeneous pegmatitic magma (which consists of immiscible silicate melts and large fluid segregations) into the host rocks results in that these segregations (would-be miaroles) occur in any part of the pegmatite-hosting chamber. This explains why miaroles of significantly different composition and with broadly varying proportions of their filling minerals may occur in various parts of pegmatite veins or their swells, as well as near contacts with the host rocks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available