4.6 Article

Depositional architecture of the late Ordovician drowned carbonate platform margin and its responses to sea-level fluctuation in the northern slope of the Tazhong region, Tarim Basin

Journal

PETROLEUM SCIENCE
Volume 7, Issue 3, Pages 323-336

Publisher

SPRINGEROPEN
DOI: 10.1007/s12182-010-0074-0

Keywords

Tarim Basin; late Ordovician; carbonate platform; depositional architecture; sea-level fluctuation

Funding

  1. National Key Basic Research and Development Program of China [2006CB202302]

Ask authors/readers for more resources

The Tazhong Uplift of the late Ordovician is a drowned rimmed carbonate platform The carbonate rock of the late Ordovician Lianglitage Formation in the northern slope of the Tazhong region is one of the significant petroliferous intervals Based on petrofacies, depositional cycles, natural gamma-ray spectrometry and carbon/oxygen isotope data from the Lianglitage Formation, one 2nd-order, three 3rd-order and several 4th-order sequences have been recognized, and the late Ordovician relative sea-level fluctuation curve has been established The sequences O(3)1-1 and O(3)1-2 on the platform are composed of highstand and transgressive systems tracts, but lack the lowstand systems tract The sequence O(3)1-3 is a drowning sequence. The sequence O(3)1-1 overlapped the eroded slope and pinched out to the northwest and landward The highstand systems tract in the sequence O(3)1-2 consists of low-angle sigmoid and high-angle shingled progradation configuration Major sedimentary facies of the Lianglitage Formation include reef and shoal in the platform margin and lagoon, which can be subdivided into coral-sponge-stromatoporoid reef complex, sand shoal, lime mud mound, and intershoal sea Reefs, sand shoals and their complex are potential reservoir facies. The reefs and sand shoals in the sequence O(3)1-1 developed in the upper of its highstand systems tract In the sequence O(3)1-2, the highstand systems tract with an internal prograding configuration is a response to the lateral shifting of the complex of reef and sand shoal. The transgressive systems tract, in particular the sand shoals, developed widely on the slope of the platform margin and interior The reefs in the sequence O(3)1-3 migrated towards high positions and formed retrograding reefs in the western platform and low relief in the platform interior. Basinward lateral migration of the reefs and pure carbonate rock both characterize highstand systems tract and show that the rise of the relative sea-level was very slow. Shingled prograding stacking pattern of the 4th-order sequences and reefs grow horizontally, which represents the late stage of highstand systems tract and implies relative sea-level stillstand Reefs migrating towards high land and impure carbonate rock both indicate transgressive systems tract and suggest that the relative sea-level rose fast Erosional truncation and epidiagenetie karstification represent a falling relative sea-level. The relative sea-level fluctuation and antecedent palaeotopography control the development and distribution of reef complexes and unconformity karst zones. Currently, the composite zone of epidiagenetic karstic intervals and high-energy complexes reefs and sand shoals with prograding configuration is an important oil and gas reservoir in the northern slope of the Tazhong carbonate platform.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available