4.7 Article

The linker length of glucose-fipronil conjugates has a major effect on the rate of bioactivation by β-glucosidase

Journal

PEST MANAGEMENT SCIENCE
Volume 75, Issue 3, Pages 708-717

Publisher

WILEY
DOI: 10.1002/ps.5170

Keywords

glucose conjugate; beta-glucosidase; substrate docking; hydrolysis rate

Funding

  1. National Natural Science Foundation of China [31672044]
  2. Natural Science Foundation of Guangdong Province [2014A030311044]
  3. Science and Technology Program of Guangzhou [201510010299]

Ask authors/readers for more resources

BACKGROUND Endogenous plant beta-glucosidases can be utilized to hydrolyze pro-pesticides and release the bioactive pesticide. Two related glucose-fipronil conjugates with different linkers structure, N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazol-5-yl}-1-(2-triazolethyl-beta-d-glucopyranoside)-1H-1,2,3-triazole-4-methanamine (GOTF) and N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl)-sulfinyl]-1H-pyrazol-5-yl}-2-aminoethyl-beta-d-glucopyranoside (GOF), were deglucolysated by beta-glucosidase both in vitro and in vivo at different rates. Here, the basis for these differences was investigated by revealing the kinetics of the reaction and by modeling molecular docking between enzyme and substrate. RESULTS Results from kinetic study showed that the reaction rate was the main reason for the poorer rate of GOF hydrolysis with respect to GOTF. Modeling of substrate docking indicated that the spacer arm of glucose-fipronil conjugates affects the strength of non-covalent bonds within the active site and the position of fipronil within the pocket. Four glucose-fipronil conjugates and four corresponding aglycones were synthesized, and the hydrolysis data confirmed that the increased tether length between the bulky aglycone and glycone would lead to faster hydrolysis rate. The bioassay results indicated that most glucose-fipronil conjugates displayed moderate to excellent insecticidal activities in vivo against Plutella xylostella larvae. CONCLUSION This study provides a potential strategy to optimize the substrate structure to enhance hydrolytic specificity in order to design appropriate phloem mobile pro-pesticides. (c) 2018 Society of Chemical Industry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available